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Summary

New empirical scoring functions have been developed to estimate the binding affinity of a given protein-ligand
complex with known three-dimensional structure. These scoring functions include terms accounting for van der
Waals interaction, hydrogen bonding, deformation penalty, and hydrophobic effect. A special feature is that three
different algorithms have been implemented to calculate the hydrophobic effect term, which results in three parallel
scoring functions. All three scoring functions are calibrated through multivariate regression analysis of a set of 200
protein-ligand complexes and they reproduce the binding free energies of the entire training set with standard
deviations of 2.2 kcal/mol, 2.1 kcal/mol, and 2.0 kcal/mol, respectively. These three scoring functions are further
combined into a consensus scoring function, X-CSCORE. When tested on an independent set of 30 protein-ligand
complexes, X-CSCORE is able to predict their binding free energies with a standard deviation of 2.2 kcal/mol.
The potential application of X-CSCORE to molecular docking is also investigated. Our results show that this
consensus scoring function improves the docking accuracy considerably when compared to the conventional force
field computation used for molecular docking.

Introduction

Considerable advances in structure-based drug design
have made a significant impact on drug discovery
processes in the past decade [1–5]. By utilizing the
essential structural properties of the target macromole-
cule, a variety of methods now exist for suggesting
potential ligand molecules either by screening large
chemical databases [6–10] or by assembling molec-
ular fragments inside the binding site [11–18]. These
methods usually suggest a large number of molecules
rapidly, far too many for organic synthesis and bio-
logical experiments. Therefore, a structure-based drug
design approach tends to arrive at the bottleneck where
it is necessary to select only the most promising can-
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didates for further experimental characterization. The
basic assumption underlying structure-based drug de-
sign is that a good ligand molecule should bind tightly
to its target. Thus, it is extremely valuable to predict
the binding affinity of a given ligand to its target and
use it as a criterion for selection. This is known as
the ‘scoring problem’ and has attracted great interests
in developing methods for binding affinity calculation
[19–21].

A large group of methods calculate binding affini-
ties through force fields. In early years, attempts have
been made to calculate the direct interactions, e.g.
steric and electrostatic interactions, between a lig-
and and its target molecule and relate the force field
energies to binding affinities [22]. This method is
still popular nowadays especially among molecular
docking studies. However, as many researchers have
pointed out, the interaction energy computed in this
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way is only an approximation to the enthalpy change
in the binding process, therefore the application of
this method is usually restricted to the analysis of a
congeneric series of ligands. Some researchers have
supplemented standard force fields with an additional
term to address the solvation effect with either PB/SA
or GB/SA method [23]. More ambitious methods,
such as free energy perturbation [24] and linear re-
sponse approximation [25, 26], try to consider solvent
molecules explicitly and deal with ensemble averages.
In theory these methods are expected to give more ac-
curate predictions. However, in practice they do not
always meet this expectation due to the deficiency in
the force field as well as in the sampling procedure.
In addition, these methods are still computationally
expensive even for today’s computers, which has lim-
ited their popularity in structure-based drug design
practice.

Following the pioneering work of Böhm [27], a
number of so-called empirical scoring functions have
emerged as an alternative [28–32]. These approaches
assume that the overall receptor-ligand binding free
energy can be decomposed into basic components,
which can be written out conceptually as:

�Gbind = �Gmotion + �Ginteraction

+�Gdesolvation + �Gconfiguration.

Usually those factors which are known to be impor-
tant for the binding process are included in the above
function. Unlike force fields, empirical scoring func-
tions are not derived from ‘first principle’. Instead,
they are directly calibrated with a set of protein-ligand
complexes with experimentally determined structures
and binding affinities through multivariate regression
analysis. Empirical scoring functions have several ap-
pealing features. Firstly, since they are calibrated with
diverse protein-ligand complexes, their applications
are not limited to a certain congeneric series of ligands
or a particular target receptor. Secondly, each term
in an empirical scoring function has a clear physical
meaning. Studying the regression coefficients before
each term sheds lights on the understanding of the
receptor-ligand binding process. Thirdly, at a light-
ning speed, the accuracy level (∼2 kcal/mol) that a
current empirical scoring function can achieve in bind-
ing affinity prediction is acceptable for structure-based
drug design approaches. In recent years, empirical
scoring functions have become more and more pop-
ular among structure-based drug design applications
in which very accurate binding affinity predictions are

not necessary, such as virtual database screening and
de novo ligand generation.

We have extensive experience in applying several
empirical scoring functions, including Bohm’s scor-
ing function [27], ChemScore [30] and SCORE [32],
to structure-based drug design projects. Despite of all
the encouraging results we have obtained with these
empirical scoring functions, it is clear that there is
still plenty of room for improvement in terms of ac-
curacy as well as robustness. In this paper, we will
describe our work on further development and val-
idation of empirical scoring functions. Firstly, we
have derived three scoring functions, each of which
has only five adjustable parameters. These scoring
functions are calibrated with a diverse set of 200
protein-ligand complexes, which is the largest one
ever used by an empirical scoring function approach.
Secondly, inspired by the consensus scoring strategy
[33], we combine these three scoring functions into
a consensus scoring function, X-CSCORE, to ensure
converged results in binding affinity prediction. This
consensus scoring function is tested on an independent
set of 30 protein-ligand complexes. Thirdly, we have
also explored the potential application of X-CSCORE
to molecular docking. When compared to conven-
tional force field computation, this consensus scoring
function performs considerably better in identifying
the experimentally determined protein-ligand complex
structures.

Methods and results

Training set construction

Developing an empirical scoring function requires a
set of receptor-ligand complexes for calibration. Both
the size and the quality of the training set will affect
the final form of the scoring function. In our selection
of receptor-ligand complexes, we used the follow-
ing five criteria to ensure the quality of the training
set. (1) Only protein-ligand complexes are considered.
Complexes involving other types of receptors, such as
nucleic acids, are not included. (2) The ligand mole-
cule should be a ‘normal’ organic compound and bind
to the receptor non-covalently. Therefore, complexes
containing covalently bound ligands, complex ligands
(such as Heme), or large ligands (MW > 1000) are
excluded. (3) There should be no cofactor binding be-
side the ligand. (4) Crystal structure of the complex
with a resolution better than 3.0 Å should be avail-
able from the Protein Data Bank (PDB) [34]. Complex
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structures solved by NMR techniques are currently
not included in our selection. (5) The dissociation
equilibrium constant (Ki or Kd ) of the complex has
been determined experimentally and can be found in
literature. Complexes with only IC50 values are not
accepted.

The resulting training set has 200 protein-ligand
complexes, which comprises more than 70 different
types of proteins. Basically, this training set is an as-
sembly of the training sets used by other empirical
scoring functions [27–32] plus our own collections.
The experimentally determined binding affinities are
cited either from those previous approaches or the ref-
erences listed in the relevant PDB files. All binding
affinities are expressed in the negative logarithms of
dissociation constants, i.e. pKd , for convenience. In
this training set, the pKd values range from 1.48 to
11.42, covering nearly 10 orders of magnitude. Here
we neglect the potential inconsistence in the dissocia-
tion constants related to experiment conditions, such
as PH level, temperature, and salt concentration. A
complete list of the training set can be found in the
supplementary material section in this paper.

Coordinates of the complex structure in the train-
ing set are downloaded from PDB. No minimization
is performed to further adjust the structure. For the
convenience of processing, each complex structure is
processed in SYBYL [35]. First, the ligand is extracted
from the complex, assigned proper atom and bond
types, and then written out as a separate file in the
MOL2 format. The remaining part of the complex,
i.e. the protein, is written out into another file in the
PDB format. Metal ions located inside the binding site
are left with the protein and treated as part of it. All
crystallographic water molecules and other cofactors
are removed.

Scoring functions

We assume that the overall free energy change in a
protein-ligand binding process can be dissected into
the following terms:

�Gbind=�Gvdw + �GH - bond
+�Gdeformation + �Ghydrophobic + �G0. (1)

Here, �Gvdw accounts for the van der Waals interac-
tion between the ligand and the protein; �GH - bond
accounts for the hydrogen bonding between the lig-
and and the protein; �Gdeformation accounts for the
deformation effect; �Ghydrophobic accounts for the
hydrophobic effect; �G0 is the regression constant

which implicitly includes the effects due to the trans-
lational and rotational entropy loss in the binding
process. Detailed algorithms for calculating each term
will be described below.

(1) Atom classification. Besides element type and
hybridization state, both ligand and protein atoms need
to be classified to compute some of the terms in our
scoring functions. The atom types defined in our study
are: (i) H-bond donor. Oxygen and nitrogen atoms
bonded to hydrogen atom(s) and metal ions located
inside the binding site of the protein. (ii) H-bond
acceptor. Oxygen and sp2 or sp hybridized nitrogen
atoms with lone pair(s). (iii) H-bond donor/acceptor.
Oxygen and nitrogen atoms which may act as either
H-bond donor or H-bond acceptor, such as the oxygen
atom in a hydroxyl group. (iv) Polar atom. Oxygen
and nitrogen atoms that are neither H-bond donor
nor H-bond acceptor, sulfur and phosphorus atoms,
and carbon atoms bonded to hetero-atom(s). (v) Hy-
drophobic atom. Carbon atoms that do not belong to
the ‘polar atom’ group and halogen atoms.

The following set of atomic radii are used in com-
putation: carbon, 1.9 Å; nitrogen, 1.8 Å; oxygen,
1.7 Å; sulfur, 2.0 Å; phosphorus, 2.1 Å; fluorine,
1.5 Å; chlorine, 1.8 Å; bromine, 2.0 Å; iodine, 2.2 Å;
metals, 1.2 Å. This radii set is applied to both ligands
and proteins.

(2) Van der Waals interaction. The van der Waals
interaction is one of the essential non-covalent inter-
actions. We employ the Lennard-Jones equation to
reflect the balance between the short-range repulsion
and the long-range attractive dispersion force:

VDW=
ligand∑

i

protein∑
j

VDWij

=
ligand∑

i

protein∑
j

[(
dij,0

dij

)8

− 2 ×
(
dij,0

dij

)4
]
.(2)

Here VDW denotes for the van der Waals interaction
energy, which is calculated by considering all the atom
pairs between the ligand and the protein; dij denotes
for the distance between the ligand atom i and the
protein atom j ; dij,0 = ri + rj, i.e. the sum of
van der Waals radius of atom i and j . Note that we
use a ‘softer’ form in Equation 2 instead of the stan-
dard 12–6 equation. Furthermore, in our algorithm,
(i) only heavy atoms contribute. Hydrogen atoms are
neglected. (ii) All heavy atoms are weighted equally.
No weight factor is used to differentiate them. (iii) To
avoid the huge repulsion raised by overlapped atom
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Figure 1. Illustration of the three geometric parameters used in
characterizing a hydrogen bond.

pairs, we set an upper limit of 100 for VDWij in Equa-
tion 2. For any pair of atoms, if VDWij exceeds this
limit, it will be cut flat to 100.

(3) Hydrogen bonding. Hydrogen bonding is per-
haps the most important factor for the specific binding
of a ligand to its receptor. Such interaction happens
when two atoms get close enough and form a donor-
acceptor pair. The geometry of a hydrogen bond,
D–H· · ·A, is typically described by the bond length,
i.e. the distance between the hydrogen atom (H) and
the acceptor (A), and the bond angle, i.e. � DHA.
However, hydrogen atoms are normally not revealed
in X-ray crystallography analysis. Although hydro-
gen atoms can be added later, energy minimization
is usually required to set them into position. This
practice could become problematic especially when
the hydrogen atoms can take multiple low-energy
positions, such as the one in a hydroxyl group. Fur-
thermore, minimized structures will depend on force
field parameters and they may be incompatible with
the initial experimentally determined ones. Therefore,
we choose not to consider hydrogen atoms explicitly.
Here we introduce the concept of ‘root’: the root of an
atom is its non-hydrogen neighboring atom. When an
atom bonds with more than one non-hydrogen atom,
its root locates at the geometric center of all its non-
hydrogen neighboring atoms. Let DR denotes for the
donor’s root and AR for the acceptor’s root. In our al-
gorithm, the geometry of a hydrogen bond is described
by: (i) the distance (d) between D and A; (ii) the angle
(θ1) between DR, D and A; and (iii) the angle (θ2)
between D, A and AR (Figure 1).

We assume that a hydrogen bond has an ideal
geometry and any deviation from it will weaken the
strength of the hydrogen bond. The strength of a hy-
drogen bond is then computed by considering these
three geometric descriptors:

HBij = f
(
dij

)
f

(
θ1, ij

)
f

(
θ2, ij

)
. (3)

The distance function f (d) and the angular functions
f (θ1) and f (θ2) in Equation 3 are written in the

following simple linear fuzzy forms:

f (d) = 1.0 d0 ≤ d0 − 0.7 Å
= (1/0.7)× (d0 − d) d0 − 0.7Å < d ≤ d0
= 0.0 d > d0

f (θ1) = 1.0 θ1 ≥ 120◦
= (1/60)× (θ1 − 60) 120◦ > θ1 ≥ 60◦
= 0.0 θ1 < 60◦

f (θ2) = 1.0 θ2 ≥ 120◦
= (1/60)× (θ2 − 60) 120◦ > θ2 ≥ 60◦
= 0.0 θ2 < 60◦

Here d0 = ri + rj , i.e. the van der Waals distance
between the donor and the acceptor. These functions
are derived from the analysis of all the potential hy-
drogen bonding pairs presented in the training set. The
observed distribution of the donor-acceptor distance
(d) is shown in Figure 2a. In this figure, one can see
that the peak value appears around 2.8Å, which can
be interpreted as the ideal length of a hydrogen bond.
As d increases, the population decreases. But after d
exceeds 3.4 ∼ 3.5 Å, it passes the bottom and begins
to rise again, which can be interpreted as the turn-
ing point from a hydrogen bond to a normal van der
Waals contact. Therefore, it is reasonable to define that
f (d) = 1.0 when d = 2.8 Å while f (d) = 0.0 when
d = 3.5 Å. Considering the atomic radii of oxygen and
nitrogen atoms, 2.8 Å corresponds to d0 − 0.7 Å while
3.5 Å corresponds to d0, approximately. By assuming
that the distance dependence of the strength of a hy-
drogen bond is linear within this range, one will obtain
the function listed above. The angular functions f (θ1)
and f (θ2) are also derived similarly by interpreting the
observed distributions of θ1 and θ2 from the training
set (Figures 2b and 2c).

The hydrogen bonding interaction between the lig-
and and the protein is calculated by summing up all
the hydrogen bonds:

HB =
ligand∑

i

protein∑
j

HBij (4)

All types of hydrogen bonds, i.e. O-O, O-N, and N-
N, are equally weighted so that no extra parameter is
necessary. Special attention has been paid to the sat-
uration in hydrogen bonding if one donor or acceptor
atom contacts with multiple donor or acceptor atoms.
For a given donor or acceptor atom, we define that (i)
the maximal number of hydrogen bonds that a donor
atom can form should not exceed the number of hy-
drogen atoms on that donor atom; and (ii) the maximal
number of hydrogen bonds that an acceptor atom can
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Figure 2. Distribution of the three geometric parameters in a hy-
drogen bond observed in the training set: (a) the donor-acceptor
distance (in angstroms); (b) the DR-D-A angle (in degrees); (c) the
D-A-AR angle (in degrees).

form should not exceed the number of lone pairs on
that acceptor atom. If an atom could be a donor and an
acceptor at the same time, such as the oxygen atom in
a hydroxyl group, both rules apply.

As implied above, charged and neutral hydrogen
bonds are not treated separately in our scoring func-
tions since we find that the improvement of our scor-
ing functions in the training set regression is totally
negligible by separating them.

In some cases, metal ions are found inside the bind-
ing site of the protein. They may form coordinated
bonds with atoms with lone pairs in the ligand and thus
also contribute to the binding affinity. We include this
kind of interaction in the hydrogen bonding term since
it is the same as hydrogen bonding in nature, i.e. Lewis
acid-base pair. Note that technically we define metal
ions as ‘donor’ so that the metal-ligand coordinated
bonds are calculated with exactly the same distance
and angular functions of hydrogen bonding.

(4) Deformation effect. Upon binding, both the
ligand and the protein will be constrained in confor-
mation as compared to their free states in solvent. This
will raise adverse entropic changes, which is a nega-
tive effect that must be overcome during the binding
process. In other empirical scoring functions, the de-
formation effect of the ligand is often estimated by
counting the number of rotatable bonds (rotors) that
become frozen during the binding process, assuming
that each rotor is associated with a discrete number of
low-energy conformations and thus a certain amount
of conformational entropy. If there are more than one
rotor in the ligand, their contributions are assumed to
be additive. This assumption is reasonable when all
the rotors are isolated and free to rotate, so the low-
energy conformations associated with each rotor will
multiply to build up the entire conformational space.
However, when two or more rotors cross, apparently
this assumption is no longer valid because now the
rotation of any of them will interfere with the others
and this will result in a reduction in the total num-
ber of possible low-energy conformations (Figure 3).
Therefore, simply counting the number of rotors often
overestimates the conformational flexibility of certain
kinds of molecules, such as oligo-peptides.

In our algorithm, rotor is defined as acyclic sp3-
sp3 or sp3-sp2 single bond between two non-hydrogen
atoms. Terminal groups, such as –CH3, –NH2, –OH,
and –X (X = F, Cl, Br, I), whose rotation does not
produce any new conformation of heavy atoms are not
counted as rotors. The potential flexibility of cyclic
portions of the ligand is ignored. The deformation
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Figure 3. Illustration of ‘isolated’ (on the left) and ‘crossed’ rotors
(on the right).

effect of the ligand is then expressed as the contribu-
tion of all the rotors with proper weight factors. For
the convenience of computation, rotors are counted by
summing the share of each ligand atom:

RT =
ligand∑

i

RTi , (5)

where RTi = 0 if atom i is not involved in any rotor;
RTi = 0.5 if atom i is involved in one rotor; and
RTi = 1.0 if atom i is involved in two rotors. How-
ever, if atom i is involved in more than two rotors,
then RTi = 0.5. Note that, according to the conven-
tional rotor-counting algorithm, RTi should be 1.5 (in
three rotors) or 2.0 (in four rotors) in this case. This
reduction in the RTi value reflects our consideration
for offsetting the overestimation of conformational
flexibility in the conventional algorithm. Although
very crude, we found that our algorithm improves the
accuracy of our scoring functions.

In our algorithm, the deformation effect of the
protein is neglected. We have attempted to count the
number of rotors presented in the side chains of the
binding site residues and include it as a term in our
scoring functions. However, such attempt did not im-
prove the result. It is not surprising since the side
chains of the binding site residues are generally immo-
bilized even in the unbound state due to the stacking
of neighboring residues. A more reasonable algorithm
needs to be developed to account for the flexibility of
the protein.

(5) Hydrophobic effect. Binding of the ligand and
the protein is accompanied by the desolvation process
that undergoes changes in entropy as well as in en-
thalpy. One of the results is that non-polar groups
tend to favor each other, which is also referred to as
‘hydrophobic effect’. This effect is very difficult for
accurate characterization since it involves complicated
ligand-water, protein-water, and water-water interac-
tions before and after binding. Different algorithms
have been used in other empirical scoring functions

to calculate this term. We have implemented three
representative algorithms in our scoring functions.

(i) Hydrophobic surface algorithm. The hydropho-
bic effect is assumed to be proportional to the buried
hydrophobic surface of the ligand (Equation 6). This
algorithm was adopted by Bohm’s scoring function
[27]. It should be pointed out that technically there are
several types of molecular surfaces. Here we choose
to use the solvent-accessible surface (SAS).

HS =
ligand∑

i

SASi . (6)

The radius of the solvent probe is set to 1.5 Å. The
solvent-accessible surface of the ligand is represented
by evenly distributed dots in a spacing of 0.5 Å. Nu-
merical integration is used to calculate the surface
area. The surface areas of hydrogen atoms are at-
tributed to their root atoms. Any part of the ligand
surface is considered buried if it penetrates into the
solvent-accessible surface of the protein. Note that
only hydrophobic atoms are considered in Equation 6.
The total amount of buried surface area is expressed in
square Angstrom.

(ii) Hydrophobic contact algorithm. The hy-
drophobic effect is calculated by summing up the
hydrophobic atom pairs formed between the ligand
and the protein. This algorithm was adopted by Chem-
Score [30]. In our algorithm, it is calculated as:

HC =
ligand∑

i

protein∑
j

f
(
dij

)
, (7)

where

f (d) = 1.0 d ≤ d0 + 0.5 Å
= (1/1.5)× (d0 + 2.0 − d) d0 + 0.5 Å < d

≤ d0 + 2.0 Å
= 0.0 d > d0 + 2.0Å.

This distance function reflects the intuition that the
strength of ‘hydrophobic interaction’ will reach the
maximum when two hydrophobic atoms form van der
Waals contact and diminish gradually with the in-
crease in the inter-atomic distance. We find that this
distance function needs to be fairly long-ranged in
order to work well.

(iii) Hydrophobic matching algorithm. This algo-
rithm was adopted by SCORE [32]. According to this
method, different parts of the ligand sense the pro-
tein differently because of the heterogeneous nature
of the binding site. If a hydrophobic ligand atom is
placed at a hydrophobic site of the protein, then it is
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expected to be favorable to the binding process. The
overall hydrophobic matching between the ligand and
the protein is calculated as:

HM =
ligand∑

i

logPi × HMi . (8)

Here HMi is an indicator variable. It is set to 1 if a
hydrophobic atom i is placed in a hydrophobic envi-
ronment; otherwise it is set to 0. LogPi refers to the
hydrophobic scale of atom i, which is the contribution
of atom i to the n-octanol/water partition coefficient
(Log P ) of the molecule. In our algorithm, the hy-
drophobic scales for all kinds of atoms are cited from
XLOGP2 [36]. They are introduced as weight factors
here to ensure that more hydrophobic atoms contribute
more to the hydrophobic effect. The ‘environment’
of a given ligand atom is defined to consist of all
the atoms on the protein which are within 6 Å from
the ligand atom. The hydrophobicity of the environ-
ment is determined by summing up the hydrophobic
scales of all its member atoms. Our investigation of
the training set shows that the average hydrophobicity
of an environment surrounding a hydrophobic ligand
atom is −0.50 logP units. Therefore, in our algo-
rithm an environment is defined as hydrophobic if its
hydrophobicity is greater than −0.50 logP units.

Finally, we summarize our scoring functions be-
low. The binding affinity of a given protein-ligand
complex, as expressed in pKd unit, is calculated by
summing up all the terms described above. Since three
different algorithms for modeling the hydrophobic ef-
fect have been implemented, we have three resulting
scoring functions:

pKd,1 = C0,1 + CVDW,1 × VDW

+CH - bond,1 × HB

+Crotor,1 × RT

+Chydrophobic,1 × HS, (9)

pKd,2 = C0,2 + CVDW,2 × VDW

+CH - bond,2 × HB

+Crotor,2 × RT

+Chydrophobic,2 × HC, (10)

pKd,3 = C0,3 + CVDW,3 × VDW

+CH - bond,3 × HB

+Crotor,3 × RT

+Chydrophobic,3 × HM. (11)

It should be emphasized that, except for the hy-
drophobic effect term, all the other terms in these

Figure 4. Correlation between the observed binding affinities of the
200 protein-ligand complexes in the training set and the fitted values
given by X-CSCORE (in pKd units).

three scoring functions are calculated using identical
algorithms. The consensus scoring function, which is
named as X-CSCORE, is the arithmetical average of
Equations 9–11:

X − CSCORE = (
pKd,1 + pKd,2 + pKd,3

)
/3 (12)

Regression analyses

Coefficients before each term in Equations 9–11 are
derived through standard least-square multivariate re-
gression analyses of the training set. They are listed in
Table 1 together with other related information. Cor-
relation coefficients (r2) and standard deviations (s)
obtained from regression are listed in Table 2. The
correlation between the observed binding affinities and
the fitted values given by X-CSCORE is shown in Fig-
ure 4. Leave-one-out cross-validations are performed
to judge the quality of the regression models. The re-
sulting q2 and spress are listed in Table 2. Both the
regression and the cross-validation are performed with
the QSAR module in SYBYL.

Validation

(1) Test set. An independent test set is usually needed
to validate a regression model. When constructing the
training set, we deliberately separate all the complexes
released by the Protein Data Bank after 1998 from the
others. These complexes, 30 in total, are used as a test
set in our study. A complete list of the test set can
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Table 1. Regression models of Equations 9–11

Term Coefficienta Mean valueb Contribution

fractionc

(Equation 9)

VDW −2.01 × 10−3 (± 1.81 × 10−3) −6.00 × 102 16.5%

H-Bond 0.307 (± 0.137) 4.21 19.8 %

Rotor −0.159 (±0.079) 7.28 25.3 %

Hydrophobic surface 7.10×10−3 (±2.50 × 10−3) 2.74 × 102 Å2 38.4%

Constant 2.69 (± 0.66) – –

(Equation 10)

VDW −0.96×10−3 (± 1.91×10−3) −6.00 × 102 8.6%

H-Bond 0.412 (± 0.149) 4.21 29.4%

Rotor −0.100 (± 0.074) 7.28 17.5%

Hydrophobic contact 3.73 × 10−2 (± 1.12 × 10−2) 43.1 44.5%

Constant 2.78 (± 0.65) – –

(Equation 11)

VDW −2.14 × 10−3 (± 1.65 × 10−3) −6.00 × 102 16.4%

H-Bond 0.311 (± 0.131) 4.21 18.8%

Rotor −0.169 (± 0.078) 7.28 25.2%

Hydrophobic matching 0.602 (± 0.159) 2.51 39.6%

Constant 3.10 (± 0.65) – –

aAll coefficients are presented in pKd units. They can be converted into binding free energies at 298 K
in kcal/mol by multiplying a factor of −1.36. The values in brackets are 95% confidence intervals in
regression.
bMean values of each term are calculated over the entire training set.
cContribution fractions are calculated by using the QSAR/PLS module in SYBYL.

Table 2. Statistical results of Equations 9–11 and X-CSCORE

Equation 9 Equation 10 Equation 11 X-CSCORE

R2 0.504 0.546 0.571 0.591

Sa 1.58 1.53 1.43 1.47

F(4, 195) 49.6 58.7 70.4 –

Q2 0.480 0.522 0.551 –

Spress 1.62 1.57 1.47 –

R2
pred 0.318 0.319 0.249 0.356

Spred 1.51 1.61 1.63 1.58

aAll the standard deviations, including S, Spress and Spred, are
presented in pKd units. They can be converted into binding free
energies at 298 K in kcal/mol by multiplying a factor of −1.36.

be found in the supplementary material section in this
paper.

All the scoring functions, including Equations 9–
12, are used to predict the binding affinities of the
30 protein-ligand complexes in the test set. The root-

mean-squared deviation (spred) is used to measure the
quality of prediction:

spred =
√∑ (

pKd,pred − pKd,obs
)2
/ (N − 1). (13)

The statistical results are shown in Table 2. The
correlation between the experimentally observed bind-
ing affinities and the predicted values given by X-
CSCORE is shown in Figure 5.

(2) Evolutionary regression. We have adopted an
iterative regression procedure to further validate the
internal consistency of our scoring functions, which
was originally proposed in our previous work SCORE
[32]. The central idea of this procedure, called evolu-
tionary regression, is to test a given regression model
with training sets of different sizes. In our study,
this procedure starts from constructing a subset of
50 complexes which are randomly selected from the
training set without duplication. This subset is used
to perform multivariate regression and leave-one-out
cross-validation for the scoring function under inves-
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Figure 5. Correlation between the observed binding affinities of the
30 protein-ligand complexes in the test set and the predicted values
given by X-CSCORE (in pKd units).

tigation. All the regression results, including r2, s, q2,
spress, and the coefficients for each term in the scor-
ing function, are recorded. This regression model is
then used to predict the Kd values of the test set. The
resulting r2

pred and spred are also recorded. Since the
subset is constructed randomly, the entire procedure,
i.e. construction of the subset, multivariate regression,
cross-validation, and calculation of the test set, is re-
peated for 10 times to reduce the noises in all the
statistical results. Only the averaged results are used
for analysis. At the next step, the size of the sub-
set is increased by 10, and the regression model is
re-evaluated with this new subset. This procedure is re-
peated until the size of the subset reached the full size
of the training set. We have performed evolutionary re-
gression for Equations 9–11. The standard deviations
observed during the evolutionary regression proce-
dure of Equations 9–11 are shown in Figure 6a–c,
respectively.

(3) Molecular docking. We have also tested the
performance of X-CSCORE in molecular docking ex-
periments. We select 10 samples from the training set,
including the L-arabinose binding protein/L-arabinose
complex (PDB code 1ABE), the alcohol dehydroge-
nase/CNAD complex (PDB code 1ADB), the adeno-
sine deaminase/DAA complex (PDB code 1ADD),
the cytidine deaminase/uridine complex (PDB code
1AF2), the maltodextrin binding protein/maltose
complex (PDB code 1ANF), the carboxypeptidase
A/L-benzylsuccinate complex (PDB code 1CBX),
the antibody DB3/progesterone analogue complex

Figure 6. Standard deviations (in pKd units) observed in the evo-
lutionary regression procedure. (a) Equation 9; (b) Equation 10; (c)
Equation 11.
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Figure 7. Relationship between the RMSD values (Å) and the bind-
ing energies (kcal/mol) of 100 conformations of L-benzylsuccinate
in complex with carboxypeptidase A (PDB code 1CBX). (a) Bind-
ing energies calculated by AutoDock. (b) Binding energies calcu-
lated by X-CSCORE.

(PDB code 1DBM), the dihydrofolate reductase/folate
complex (PDB code 1DHF), the glutathione S-
transferase/glutathione complex (PDB code 1GST),
and the HIV-1 protease/VX-478 complex (PDB code
1HPV). The selection of these 10 samples emphasizes
the diversity of the ligands and the proteins. For each
complex, the AutoDock 3.0 program [8] is employed
to perform a molecular docking run. In each case,
the experimentally determined complex structure is al-

Figure 8. Relationship between the RMSD values (Å) and the bind-
ing energies (kcal/mol) of 100 conformations of folate in complex
with dihydrofolate reductase (PDB code 1DHF). (a) Binding ener-
gies calculated by AutoDock. (b) Binding energies calculated by
X-CSCORE.

ways used as the starting point. The ligand is treated
flexible while the protein is kept rigid. The searching
steps in the conformational sampling for translation,
quaternion, and torsion are set to 0.5 Å, 15◦ and 15◦,
respectively. Fifty thousand genetic algorithm genera-
tions are run with a population of 100 conformations.
The final 100 best-scored conformations are saved
and their root-mean-squared deviations (RMSD), as
calculated by using the observed bound conforma-
tion as the reference, are recorded. Then the binding



21

Figure 9. Relationship between the RMSD values (Å) and the bind-
ing energies (kcal/mol) of 100 conformations of 1-deaza-adenosine
in complex with adenosine deaminase (PDB code 1ADD). (a)
Binding energies calculated by AutoDock. (b) Binding energies
calculated by X-CSCORE.

energies of these conformations are re-calculated by
X-CSCORE. RMSD values of the best-scored confor-
mations, picked by AutoDock and X-CSCORE, of all
10 complexes are summarized in Table 3. For com-
plex 1CBX, 1DHF, and 1ADD, RMSD values of the
final 100 conformations are plotted against the bind-
ing energies of these conformations in Figures 7–9,
respectively.

Program description

We have developed a program, X-CSCORE, to imple-
ment the three scoring functions described by Equa-
tions 9–11. Here ‘CSCORE’ means consensus scor-
ing; while the prefix ‘X’ indicates that it is part of our
in-house drug design toolkit X-TOOL. This program
is written in ANSI C++ and has been tested on UNIX
and LINUX platforms. The required inputs include the
three-dimensional structure of the protein in PDB for-
mat and the pre-docked ligand molecule(s) in MOL2
format. The user is allowed to enable or disable any
of the three scoring functions in computation and the
final predicted binding affinities are based on the arith-
metic average of all the enabled scoring functions. If
all three scoring functions are enabled, typically this
program is able to process around 10 000 ligand mole-
cules for a given protein target in an hour on a SGI
O2/R5000/180MHz workstation.

Discussion

Accuracy and robustness

As shown in Table 2, Equations 9–11 are able to re-
produce the binding affinities of the entire training set
with standard deviations (s) of 1.58, 1.53 and 1.43 pKd

units, respectively. Their standard deviations in leave-
one-out cross-validation (spress) are at the same level,
which are 1.62, 1.57 and 1.47 pKd units, respectively.
More importantly, these scoring functions perform al-
most equally well for the independent test set: the
standard deviations in the predicted binding affinities
(spred) are 1.51, 1.61 and 1.63 pKd units, respec-
tively. These values correspond to 2.1–2.2 kcal/mol in
binding free energy at room temperature. Considering
the diversity of the test set, such accuracy in bind-
ing affinity prediction is encouraging. Compared to
other existing empirical scoring functions, our scoring
functions have achieved better or comparable statisti-
cal results. If taking the Fisher significant ratio (F ) as
an objective criterion for comparing different regres-
sion models, the values are 32.1, 44.5 and 57.8 for
Bohm’s scoring function [27], ChemScore [30], and
SCORE [32], respectively. In comparison, the F val-
ues of our scoring functions are 49.6, 58.7 and 70.4 for
Equations 9–11, respectively.

When building a regression model, over-fitting of
the regression equation should be avoided because it
may fail to give reasonable predictions for samples
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Table 3. Results from the molecular docking studies of 10 protein-ligand complexes

PDB code Resolution RMSD (Å)a pKd

(Å) AutoDock X-CSCORE Exp.b X-CSCOREc

1ABE 1.7 0.62 0.73 6.52 5.14 (5.25)

1ADB 2.4 2.74 2.74 8.40 6.71 (8.01)

1ADD 2.4 2.93 0.83 6.74 5.63 (5.36)

1AF2 2.3 0.88 0.88 3.10 5.26 (4.90)

1ANF 1.67 0.60 0.54 5.46 6.16 (6.03)

1CBX 2.0 2.30 0.77 6.35 5.74 (5.74)

1DBM 2.7 1.31 1.13 9.44 6.84 (6.65)

1DHF 2.3 6.44 1.24 7.40 6.34 (5.27)

1GST 2.2 0.74 1.21 4.68 5.92 (5.21)

1HPV 1.9 1.73 1.16 9.22 6.47 (6.28)

aRMSD value of the best scored conformation in reference to the observed bound
conformation.
bExperimentally determined binding affinity.
cCalculated binding affinity for the best scored conformation. The values in brackets
are the calculated one for the observed bound conformation.

outside the training set. For this reason, only a min-
imal number of adjustable parameters are included in
our scoring functions to achieve maximal N/M ratio
in regression analysis. For example, we do not as-
sign additional weighting factors to different types of
atoms when calculating the van der Waals interaction.
When calculating the hydrogen bonding, we do not
differentiate charged and neutral hydrogen bonds. No
differentiation in aliphatic and aromatic atoms was
made in calculating the hydrophobic effect. Besides
the regression constant, there are only four coefficients
in each of our scoring functions. As shown in Table 1,
they are all significant in regression analysis. Here the
van der Waals interaction term in Equation 10 seems
to be an exception, which contributes only a relative
small fraction. However, it is not surprising since the
hydrophobic effect term in Equation 10 is also cal-
culated by counting atom pairs, therefore it overlaps
with the van der Waals term partially and ‘grabs’ some
contributions from the van der Waals term.

The N/M ratio issue deserves a little more dis-
cussion. It is reasonable to expect that statistically
converged results can only be obtained by using a large
training set. But how large is large? What is the proper
size of the training set for deriving an empirical scor-
ing function like ours? To answer this question, we
have adopted the evolutionary regression procedure to
look for the answer. The idea of evolutionary regres-
sion is to test a given regression model with training
sets in different sizes and monitor the quality of the
regression model during this procedure. Several trends

can be seen in the evolutionary regression experiments
of Equations 9–11 (Figure 6). (i) The standard devi-
ation in the whole set fitting (s) gradually increases
when the training set grows larger. This can be under-
stood because the scoring function under regression is
kept fixed during the whole procedure. A larger train-
ing set represents more complexity and thus is more
difficult to reconcile. (ii) The predictive ability of the
regression model, as indicated by the standard devia-
tions in leave-one-out cross-validation (spress) and test
set computation (spred), is gradually improved when
the training set grows larger. This indicates that a
larger training set indeed helps our scoring functions
achieve better predictive ability. (iii) When the training
set is relatively small, the regression model is gen-
erally unstable. The final regression model depends
very sensitively on the contents of the training set,
which may lead to chance correlation in regression and
poor predictive ability. When the training set grows
larger, the regression model becomes more stable and
tends to converge to a certain level. As suggested by
our evolutionary regression experiments, a training set
containing at least 160 samples is required to derive a
stable empirical scoring function with four terms, i.e.
a minimal N/M ratio of 40. Unfortunately, the N/M
ratios of other existing empirical scoring functions are
generally much lower than this, e.g. LUDI (N/M =
45/6 = 9) [27], ChemScore (N/M = 82/4 = 20) [30],
and SCORE (N/M = 170/10 = 17) [32]. In our case,
the N/M ratio is 200/4 = 50. Therefore, we believe our
scoring functions are, if not much more accurate, more
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robust in binding affinity prediction for a wider range
of protein-ligand complexes.

Consensus scoring

A unique feature of our study is that three different al-
gorithms have been implemented for modeling the hy-
drophobic effect. As described in the Methods section,
hydrophobic effect is calculated either by the buried
solvent-accessible molecular surface (Equation 9), or
by the number of hydrophobic contacts between the
protein and the ligand (Equation 10), or by the hy-
drophobic matching of the ligand with the binding site
(Equation 11). All three algorithms are conceptually
acceptable and actually they represent three typical al-
gorithms adopted by empirical scoring functions for
modeling the hydrophobic effect. However, it is not
a good idea to include all three terms together in one
scoring function since they account for the same effect
and thus are highly correlated to each other. Therefore,
they have to be accommodated in three scoring func-
tions. As indicated by our regression results (Table
2), all three scoring functions perform reasonably well
and are basically comparable to each other. However,
since these three algorithms utilize different geometric
features of the given protein-ligand complex structure
in computation, their results differ. We have found
that, for 40.0% of the samples in the training set, the
difference between the lowest and the highest calcu-
lated binding affinity by these three scoring functions
is less than 0.50 pKd units; for 40.5% of the samples,
the difference is between 0.50 and 1.00 pKd units;
while for the remaining 19.5% of the samples, the dif-
ference is larger than 1.00 pKd units. One can see that
such difference is not trivial at all in many cases. Con-
ceivably, if one can predict which scoring function will
be the best for a given protein-ligand complex, the ac-
curacy in binding affinity prediction will be improved
greatly. Indeed, if the experimental values are corre-
lated to the best fitted values (each of them is chosen
from three hits), the standard deviation in the training
set fitting will drop by half to about 0.7 pKd units. We
have attempted to find out which scoring function may
perform better for certain classes of ligands or families
of proteins. Unfortunately this attempt ended without
much success.

Based on the fact that there is no reason to bias
towards any one of the three scoring functions, we
simply combine them together (Equation 12). This
practice is consistent with the idea of consensus scor-
ing which has been demonstrated to be an effective

way of improving the hit-rates in virtual database
screening [33]. As shown in Table 2, the perfor-
mance of a single scoring function may vary and is
not predictable. For example, among the three scoring
functions, Equation 9 is the worst one for the train-
ing set but the best one for the test set. In contrast,
Equation 11 is the best one for the training set but the
worst one for the test set. By averaging these scoring
functions, i.e. X-CSCORE, the result is not always
the closest one to the true value (in fact it is always
between the best one and the worst one). However,
the advantages are: (i) it provides a clear indication
of what level of accuracy these three scoring functions
can achieve. Obtaining a converged result in binding
affinity prediction is certainly important for structure-
based drug design practice; and (ii) large errors in
binding affinity prediction can be reduced. Recently
we have pointed out that the nature of consensus scor-
ing is multiple sampling [37]. By applying multiple
scoring functions in combination, the positive and the
negative errors have a chance to cancel each other
and that is why consensus scoring generally performs
better than any single scoring procedure.

Application to molecular docking

Our scoring function is developed primarily for esti-
mating the binding affinity of a given complex with
known structure (‘scoring’). We also expect it to be
useful for identifying the correct ‘pose’ of a ligand
to its receptor (‘docking’). Although some disputes
still exist in whether ‘docking’ or ‘scoring’ should use
the same type of function, we believe that ideally a
‘scoring’ function should also be able to serve as a
‘docking’ function. This is very important because in
practice ‘docking’ and ‘scoring’ are often inseparable,
such as in a virtual database screening study.

As described in the Methods section, we have in-
vestigated the potential application of X-CSCORE in
molecular docking with 10 samples. Since we have
not implemented this consensus scoring function into
any molecular docking program directly, we employ
the AutoDock program as a tool to generate possi-
ble bound conformations of the given ligand. All the
conformations are then re-evaluated by X-CSCORE.
RMSD values of the best scored conformations of
these 10 protein-ligand complexes are listed in Ta-
ble 3, where the results of X-CSCORE and the force
field calculation in AutoDock are compared side by
side. As one can see, if using the force field cal-
culation in AutoDock as the scoring engine, 4 out
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of the total 10 samples have RMSD values larger
than 2.0 Å; while if using X-CSCORE as the scoring
engine, only one sample, i.e. the alcohol dehydro-
genase/CNAD complex (PDB code 1ADB), shows
a RMSD value larger than 2.0 Å. In this case, we
have checked all the 100 conformations generated by
AutoDock and we found that the lowest RMSD value
is 2.74 Å. This indicates that, with the parameters
we were using, AutoDock has not generated any con-
formation close enough to the observed one. In fact,
X-CSCORE predicts a much higher pKd value of
8.01 for the observed one. The RMSD versus en-
ergy relationships observed in our docking tests for
the Carboxypeptidase A/L-benzylsuccinate complex
(PDB code 1CBX), the Dihydrofolate reductase/folate
complex (PDB code 1DHF), and the adenosine deam-
inase/DAA complex (PDB code 1ADD) are shown in
Figures 7–9, respectively. For these three samples, the
best RMSD values given by AutoDock are 2.30 Å,
6.44 Å and 2.93 Å; while the corresponding ones given
by X-CSCORE are 0.77 Å, 1.24 Å and 0.83 Å. It is
very interesting to notice that, in the case of 1DHF,
AutoDock has apparently chosen a wrong class of con-
formations while the correct one is somehow scored
about 2 kcal/mol higher. In contrast, X-CSCORE has
no problem in identifying the correct conformation.

It is very encouraging that our scoring functions
are also applicable to molecular docking. Our scor-
ing functions have all the necessary elements that
correspond to the non-covalent interactions in a con-
ventional force field, such as the van der Waals in-
teraction and the electrostatic interaction (replaced by
the hydrogen bonding term in our scoring functions).
Besides that, our scoring functions also consider the
hydrophobic effect and thus provide a better estima-
tion of binding free energies. This is suggested in
Figures 7b, 8b and 9b. In these cases, there is al-
ways a clear correlation between the RMSD values
of the conformations and their binding energies cal-
culated by X-CSCORE. Generally, the smaller is the
RMSD value, the lower is the binding energy. The im-
portance of this feature should not be underestimated.
Molecular docking is a conformational sampling pro-
cedure which is performed on the potential energy
surface defined by a certain scoring function. It is
important that this potential energy surface does not
contain a large number of false minima since such
frustration will probably lead to poor convergence or
wrong binding modes. The potential energy surface
defined by an ideal scoring function should shape like
a funnel, on which all the paths finally go down to

the right position. As indicated by the RMSD ver-
sus energy relationships shown in Figures 7b, 8b and
9b, our consensus scoring function may have such an
appealing feature. We expect that if a molecular dock-
ing program adopts our consensus scoring function
as its scoring engine, its accuracy and efficiency in
finding the correct bound structure will be improved
considerably.

Considering that in practice our consensus scoring
function will be applied in conjunction with molec-
ular docking programs, it is highly desirable that all
our scoring functions are able to tolerate at least a
small amount of uncertainty in the input structure. For
this reason, we have designed our scoring functions in
such a way that they are not too sensitive to atomic
coordinates. For example, we avoid the explicit use
of hydrogen atoms in our algorithms. The reason is
that predicting the position of a hydrogen atom pre-
cisely could be problematic when the hydrogen atom
is bonded to a terminal rotatable group, such as a
hydroxyl group. This uncertainty will lead to large
deviation if hydrogen atoms have to be included ex-
plicitly in the calculation. Secondly, all the terms in
our scoring functions are calculated with relatively
large tolerances. For example, a ‘softer’ 8–4 equa-
tion is adopted in the van der Waals interaction term;
loose criteria for distance and angular dependence are
adopted in the hydrogen bonding term; long-distance
cutoff is adopted in the hydrophobic effect terms. All
these efforts are dedicated to emphasize on the overall
fitness of the ligand to the binding site rather than triv-
ial structural details. As shown in Table 3, by applying
X-CSCORE, if a conformation is close to the reference
conformation, then indeed it will get a score close to
the one of the reference conformation.

Strength and weakness

Our scoring functions are developed to provide fast
binding affinity estimations for a wide range of pro-
teins and ligands. As demonstrated by the training set
and the test set, the average accuracy of our consen-
sus scoring function in calculating absolute binding
free energies is approximately 2 kcal/mol. This level
of accuracy is acceptable for structure-based lead dis-
covery in which very accurate prediction of binding
free energies may not be necessary, such as virtual
database screening or de novo structure generation.
The speed of our consensus scoring function is also
perfectly suitable for such approaches.
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We have implemented our scoring functions in a
user-friendly program and have already applied it to
several on-going structure-based drug design projects
in our group. In these projects, large chemical data-
bases are screened first by a standard docking pro-
gram, such as DOCK, to pick out the top 10%
compounds. These compounds are then re-evaluated
by X-CSCORE. The best compounds selected by
X-CSCORE, usually less than 0.1% of the original
database, are then tested in biological assays. Very
promising compounds have been identified since the
application of this approach.

However, the accuracy of our consensus scoring
function in binding affinity prediction is still not to-
tally satisfactory: an error of 2 kcal/mol in binding
free energy equals to approximately 50 folds in dis-
sociation constant. Several drawbacks in our approach
may have contributed to this inaccuracy. Firstly, since
our scoring functions are derived from regression, they
tend to characterize only the “common” interactions
that are exhibited by a large population in the training
set. Some other types of interactions, such as cation-
π interaction and π-π stacking, are not included in
our scoring functions simply because they have rare
occurrences and thus do not contribute much to the re-
gression model. It is thus expected that a general-type
scoring function like ours could fail to give reason-
able predictions when these types of interactions are
playing an important role in protein-ligand binding.
Secondly, there are also some factors which are com-
mon but we do not really have reasonable methods
to take them into account. One example is the wa-
ter molecules existing on the protein-ligand interface.
Such water molecules are quite common and in some
cases are thought to play an important role in the
ligand binding. However, it remains unclear how to
consider water molecules explicitly with an empiri-
cal scoring function. If water molecules need to be
considered explicitly, maybe the entire algorithm for
modeling the so-called ‘hydrophobic effect’ needs be
replaced as well.

Our scoring functions also tend to give large posi-
tive errors for complexes with very low affinities and
large negative errors for complexes with very high
affinities (Figure 4). This phenomenon contributes to
the significant positive intercept (∼ 3 pKd units) ob-
served in all three scoring functions. Given the fact
that most of the samples in the training set (80%) have
pKd values between 3.00 and 9.00, our scoring func-
tions are calibrated better for binding affinities at this
range. In fact, if only the samples within this affinity

range are chosen to derive our scoring functions, the
standard deviations in regression will drop to 1.2–1.3
pKd units (∼ 1.7 kcal/mol in binding free energy).

Another major problem is the quality of the train-
ing set. Ideally, each protein-ligand complex in the
training set should have a known high-resolution
three-dimensional structure together with a reliably
measured binding affinity value accessible to the pub-
lic. Obtaining protein-ligand complex structures is not
a problem since the Protein Data Bank provides an
excellent resource for such information. However, col-
lecting the binding affinities for these complexes is a
tedious job since they all scatter in various literatures.
So far, no appreciable database for such information
has been established. The training set used in our
study is a compilation of the training sets published in
others’ work plus our own collections from the litera-
ture. Containing 200 samples, it is already the largest
set published to date in an empirical scoring func-
tion approach. As demonstrated in our evolutionary
regression test, the size of this training set is suffi-
cient for calibrating our scoring functions. However,
the binding affinity data presented in this training set
still need careful examination because a large portion
of them are cited directly from others’ work without
further confirmation. Besides, some of the dissociation
constants could have been measured under different
experimental conditions, such as PH level, tempera-
ture, and salt concentration. The uncertainties in the
binding affinity data have certainly placed an intrinsic
limit on the accuracy of our scoring functions.

It should be mentioned that all the drawbacks we
have discussed above are shared by other empirical
scoring functions as well. Despite of all these draw-
backs, empirical scoring functions remain a valuable
and indispensable means for structure-based drug de-
sign. Constructing a better training set will not be a
problem in the future because more and more struc-
tural and binding affinity data are becoming available.
We are also optimistic that better algorithms will ap-
pear to account for the binding process. All these
efforts will lead to a substantial improvement in the
performance of future empirical scoring functions.

Conclusion

We have developed a consensus empirical scoring
function, X-CSCORE, for estimating the binding
affinity of a given protein-ligand complex with a
known three-dimensional structure. The framework
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of our study is very similar to Böhm’s pioneering
work. However, we have presented our works on de-
signing better algorithms for the contributing terms
and calibrating the scoring functions against a larger
training set. As shown in this paper, our consensus
scoring function is able to predict the binding free
energies with an average accuracy of approximately
2 kcal/mol. Its potential application to molecular dock-
ing is demonstrated with a number of protein-ligand
complexes. When compared to the conventional force
field calculation, X-CSCORE performs considerably
better in identifying the correct bound conformations.
Considering the reasonable accuracy, the wide ap-
plicability, and the respectable speed, we expect that
X-CSCORE will become a valuable tool for structure-
based drug design.

Supplementary material

Tables of the training set (200 protein-ligand com-
plexes) and the test set (30 protein-ligand complexes).
The program, X-CSCORE, is available by contacting
the authors.
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